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Abstract. We consider the classical optimization problem of minimiz-
ing a strongly convex, non-smooth, Lipschitz-continuous function with
one Lipschitz-continuous constraint. We develop the approach in [10] and
propose two methods for the considered problem with adaptive stopping
rules. The main idea of the methods is using the dichotomy method and
solving an auxiliary one-dimensional problem at each iteration. Theo-
retical estimates for the proposed methods are obtained. Partially, for
smooth functions, we prove the linear rate of convergence of the meth-
ods. We also consider theoretical estimates in the case of non-smooth
functions. The results for some examples of numerical experiments illus-
trating the advantages of the proposed methods and the comparison with
some adaptive optimal method for non-smooth strongly convex functions
are also given.
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1 Introduction

The optimization of non-smooth functions with constraints attracts wide inter-
est in large-scale optimization and its applications [4,14]. There are a lot of
methods of solving such kind of optimization problems. Some examples of these
methods, to name but a few, are: bundle-level method [13], penalty method

The authors are very grateful to Alexander V. Gasnikov and Anastasiya S. Ivanova
for fruitful discussions. The research of F. Stonyakin in Algorithm 1, Theorem 2 and
Lemma 2 was supported by Russian Foundation for Basic Research according to the
project 18-29-03071 mk. The research of F. Stonyakin in Subsects.3.4 and 3.5 was
supported by Russian Science Foundation grant 18-71-10044.

© Springer Nature Switzerland AG 2019

M. Khachay et al. (Eds.): MOTOR 2019, LNCS 11548, pp. 82-96, 2019.
https://doi.org/10.1007/978-3-030-22629-9_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22629-9_7&domain=pdf
http://orcid.org/0000-0002-9250-4438
http://orcid.org/0000-0001-5470-0182
http://orcid.org/0000-0001-9672-0616
http://orcid.org/0000-0003-3640-5256
https://doi.org/10.1007/978-3-030-22629-9_7

On Some Methods for Strongly Convex Optimization Problems 83

[15] and Lagrange multipliers method [5]. Recently in [2], some adaptive Mir-
ror Descent methods were proposed for optimization problems of convex and
strongly convex functions with non-smooth constraints

min{f(z): z€QCE, g(z)<0}, (1)

where () is a convex and compact subset of a finite-dimensional real vector space
E, f:Q — Rand g: EF— R are convex Lipschitz-continuous functions. In the
case of several strongly convex non-smooth constraints, we consider one max-
type constraint which is also strongly convex.

Methods in [2] are optimal from the point of view of lower oracle bounds and
guarantee achieving acceptable precision & with complexity O (5_1) for strongly
convex, Lipschitz-continuous objective f and convex Lipschitz-continuous con-
straint g.

In this paper, we develop the approach in [10] and propose an alternative
approach for the problem (1) with a strongly convex Lipschitz-continuous objec-
tive f and a convex Lipschitz-continuous constraint g. Our approach is based on
the transition to a strongly convex dual problem. In this case, the dual function
depends on one dual variable A > 0. When the Slater conditions for the problem
(1) hold, all possible values of the dual variable are limited to a certain segment.
This allows us to apply the dichotomy method similarly to [10] to search for the
value of the dual variable A\, which is close to the appropriate \,, for which

A - gla(A.)) = 0. (2)

We propose two algorithms with adaptive stopping criterion that meet the
necessary condition (2) in the general situation A, > 0 (Algorithm 1), as well as
under the stronger assumption of the existence of A, > 0 (Algorithm 2). Partially,
the last condition holds for the economic problem considered in [10].

It turns out that, with the possibility of a relatively quick solution of auxiliary
problems, due to the proposed adaptive stopping criterion, Algorithms1 and 2
may work faster than the optimal schemes in [2]. In proposed Algorithms1 and
2 strong convexity of g is not required, and there is also no need to know the
value of the strong convexity parameter of f.

The paper consists of an Introduction and four main sections. In Sect. 2
we consider the problem statement and some basic information concerning the
necessary conditions of the extremum. In Sect. 3 we describe two main algorithms
and give some estimates of the rate of convergence for them. Section 4 is devoted
to basic information for optimal Mirror Descent Algorithms in the class of non-
smooth strongly convex functions [2]. In Sect.5 we make a comparison between
the proposed algorithms and Mirror Descent Algorithm [2].

Thus, in the paper, we propose two methods for solving the problem (1) with
the following types of assumptions:

|f(x) = F)l < Myllz —yll2, 19(z) — g(y)| < Mg|lz —yll2 3)

or

V(@) = VW2 < Lylle = yll2, [[Va(x) = Va@)llz < Lgllz —yll2 - (4)
for all z,y € @, and for some real positive numbers My, My, L¢, L.
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The contributions of this paper can be summarized as follows.

— With assumptions (4), the proposed methods have complexity

O <1og§ i) , (5)

i.e. the linear rate of convergence. Note that we assume the strong convexity
for the objective f only. The functional constraint ¢ may not be strongly
convex.

1 1
— With assumptions (3) we obtain complexity O —logy — |, which is generally
€ €

not optimal. However, due to the adaptivity of Algorithms 1 and 2, these
methods can work faster than the optimal ones in [2] (see Sect.5 below).
Note that, unlike ([2], Subection 3.2), we require the strong convexity only of
the objective functional f. In this case, the functional g, in general, may not
be strongly convex.

— Also, a class of non-smooth functionals is considered, for which Algorithms 1
and 2 have complexity (5) (see Subsect. 3.4 below).

2 Problem Statement

Let (E, ||-||2) be a normed finite-dimensional vector space with inner product (-, -)
and norm ||z||z = v/(z,z). In this paper we consider the following optimization
problem

r) — min , 6
0= (©
x

where f is a py-strongly convex function with respect to the 2-norm, i.e.
I
flaz+ (1 —a)y)) < af(@) + (1 a)f(y) - a(l — o)z —y|3
for a € [0,1] and for all 2,y € Q. Assume that f and g are Lipschitz-continuous:

[f(y) = f@)] < Mylly — zll2, Va,y €@,
19(y) = 9(2)| < Mylly — |2, Va,y € Q.
Let us introduce a dual factor A > 0 and consider the dual problem to (6).

min f(z) = min {f(x) + max()\g(x))} = max { min (f(x) + Ag(z)) }

9(z)<0 z€EQ A>0 A0 LzeQ
TEQR

=p(A)

Then the dual problem to the problem (6) is:

e(A) = f(z(N) + Ag(x(}A)) — max, (7)

>0
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where

@(A) = argmin {f(x) + Ag(2)} . (8)

Let us mention the following important well-known Demyanov-Danskin-
Rubinov Theorem, see [7,8].

Theorem 1. Let p(\) = min F(x, \) for all X\ > 0, where F(x, \) is a smooth
zEX

convex function with respect to X and x(\) is the only mazimum point. Then

¢'(A) = FX(@(A), A).

For the problem (7) Theorem 1 means that:

©'(A) = g(z(N))- (9)

Let A* be a solution of the dual problem (7). Then, according to the necessary
condition of the extremum, the following equality must be satisfied for \*:

Mg(a(A) =0, A >0,

which, by using (9), can be modified as follows:

A (A*) =0, \* > 0. (10)

3 Algorithms and Estimates of the Accuracy of Solutions
and the Rate of Convergence

To solve the above-mentioned optimization problem (6), we proposed two algo-
rithms. The main idea of the proposed algorithms is using the dichotomy method
to solve the dual problem and solving an auxiliary one-dimensional problem at
each iteration of the algorithms. Note that stopping criteria are the only differ-
ence between these algorithms.

Algorithm 1

Require: convex function f; initial localization interval [/\SM-W ASW} of the dual vari-
able; accuracy J for auxiliary problems; accuracy .
1: N:=0
2: repeat
. )\N . >‘7J:111n+>‘71>71,az.

AY) = arg mm{f( )+ AVg(@)}s
M) =

3

4

5: ( g(xs(AY)); N
6:  if o'(A\N) < 0 then AN}} = 2mintAmaz
7

8

9

ZH

if ©'(AY) > 0 then ANF! = Amin e
: N:=N-+1;
: until )\N\g(xg()\N))\ <e.

Ensure: A\, with AV |g(zs(A™))| < &5 xs(AY).
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Algorithm 2

Require: convex function f; initial localization interval {)\mm, A?naz} of the dual vari-
able; accuracy ¢ for auxiliary problems; accuracy e.
1: N:=0
2: repeat
AN — mm"'AmeL.

z5(A )—argmm{f( )+ AVg(@)}s
M) =

3

4

5 ON) = gles(0)) i
6: if ¢’ (AY) < 0then )1} = 7"”"+A"L“ ;
7

8

9

if ¢'(AY) >0 then A} = &
. N:=N+1
: until |g(zs(AY))| < e.

Ensure: \V, with |g(zs(A\™))| < &5 zs(AY).

Remark 1. Note that the stopping criterion of Algorithm 1 is necessarily reached
due to the assumption that there exists such k£ € N, \* = 0. However, we need an
additional assumption to guarantee that the Algorithm 2 stops. Suppose there
exists a point T € @, such that ¢'(z) = 0.

3.1 Slater Condition

In order to use the dichotomy method and solve the dual problem, it is necessary
to compactify the dual variable. So, the initial interval of the localization of
the dual variable must be determined. As the dual variable reflects namely the
inequality constraint, we can take zero as the lower bound, that means

)\min = 0.
To determine the upper bound, we need to use the Slater condition.
Lemma 1. Consider the problem of convex optimization

r) — min .
/@) 9(z)<0
z€Q

Suppose the Slater condition is satisfied, so there is such a point T € @ that
9(T) < 0, i.e. there exists v > 0 such that g(T) = —v < 0. Then the following
estimate holds 1
—(f(Z) — min 11
7(f() min f(z)). (11)

A<

where \* is a solution of the dual problem ¢@(\) — max.

=
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Proof. Note the following inequality

min f(z) = min § f(z) + \_Ag,g(x) < maxmin {f(z) + Ag(x)}

= min{f(z) + X'g(2)} < f(2) + N'g(z) = f(2) + X
Using this inequality one can get

A%y < f(@) — min f(z).

O

Thus, by using lemma (1), we can take the upper bound for the dual variable
A as follows:

Amaz = %(f () — min f (x))

3.2 An Estimate of the Accuracy of Solutions for the Proposed
Algorithms

To estimate the rate of convergence of the previous Algorithms 1 and 2, we need
the following analogue of Theorem 1 from [11].

Theorem 2. Let f(x) be a py-strongly convex function, the function g(x) satis-
fies the Lipschitz condition with a constant M,. Then the function ¢()), defined
in (7), where x(X\) is determined by the condition (8), is an M} /pus-smooth
function, i.e. the derivative of the function ©(\) satisfies the following Lipschitz
condition

0" (A2) = @' (A1)] < L [A2 = M, (12)
with a constant Ly, = M7 /jy.

Proof. Let A1, A2 € [Mmin, Amaz]. Define
z1 = arg ggg{f(w) +Mig(z)}, x=arg ggg {f(z) + Xag(x)}.

Since x; and x5 are unique due to the strong convexity of the function f and
by using (9), one can get

¢'(M1) = g(21), ¢’ (N2) = g(z2).
Recall the necessary optimality conditions are
(Vf(r1) + MVg(21), 21 —22) <0, (Vf(22) + A2Vg(22), 22 — 1) <O.

Summing these inequalities, we get

<Vf(a?1) - Vf(l‘g), Ty — 33‘2) < </\1Vg(l‘1) - /\QVg(a:g), T — $1>.
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Due to the strong convexity of f(x), we obtain the following inequality

(Vf(x2) = Vf(21), 2 — 31) > pug||wa — 213
Then

prllze — 21|13 < (M Vg(ar) — )\2V9($2), Ty — T1)

= &;(Vg(wl) 9(72), T2 — x1) +(A1 — A2)(Vg(22), 22 — 1)
>0 <0

<A = A2[(Vg(2), 22 — 1) < [A1 — Aof [[Vg(z2)l[2 |72 — 21]]2
< Mg|A = Aol [[z2 — 212,

where ||[Vg(z2)||2 < M, since g satisfies Lipschitz condition (3).
Thus, for x1 # x5 we get

ppllre — z1lla < Mg[ha — Ayl

As a result, the following estimate holds

M2
' (X2) — &' (A1)| = lg(z2) — g(z1)| < Myl|za — 1|2 < T:W - M.
0

In order to estimate the accuracy of solutions of the proposed Algorithms 1
and 2, we set the following two lemmas.

Lemma 2. Suppose the stopping criterion of Algorithm 1 holds for X = AV,
then the following inequalities hold

F@s) = f@*) <e+4, glas(V) < 5.
For the case § = ¢ we get
Fles(N) = fa*) <26 glas(V) < 5

Proof. Let A* be a solution of the dual problem (7). Denote z* = x(A*). Then
we get the following relation

f(zs(N) + Ag(xs(N)) < f(x(N) + Ag(x(N)) +6 = ¢(A) + 6
O\ + 6= f(z*) + N g(a*) + 0 < f(z*) + 6.
\,—/

<0

<
<

Consequently,

flzs(N) = f(z*) < =Aglas(\) +0 <e+d

due to the stopping criterion of Algorithm1, as required. The inequality
g(z5(\)) < § follows from the stopping criterion of Algorithm 1 (see item 9).
O
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Also an analogue of Lemma 2 takes place.

Lemma 3. Suppose the stopping criterion of Algorithm 2 holds for X = AV,
then the following inequalities hold

f(xs(N) = f(2") S Ae +6, g(zs(N) <e.

For the case d = ¢ we get
flxs(N) = f(@®) < (A+ 1), g(as(N) <e.

Remark 2. Let us analyze Lemmas?2 and 3. Algorithm 1 (Lemma2) guarantees
the desirable accuracy of the solution with respect to the objective function, but,
possibly, unsatisfactory accuracy of the solution with respect to the constraint,
as the estimate is huge in case A is small. Algorithm 2 (Lemma3) provides the
desirable accuracy of the solution with respect to the constraint and, possibly,
unsatisfactory accuracy of the solution with respect to the objective function
in case A is huge. So one of the Algorithms 1, 2 surely guarantees the desirable
accuracy with respect to both the objective function and the constraint.

3.3 Estimates of the Rate of Convergence
for Lipschitz-Continuous Functionals

The idea of the proposed methods is the consistent decrease of the localization
interval of the values of the dual variable A. At each iteration of Algorithms 1
and 2, this interval decreases by 2 times and every time contains A, for which
Axg(z(As)) = 0 (for Algorithm 1)

Ag(a(A)) = A’ (M) =0
or g(z(A«)) = 0 (for Algorithm 2)
gz0) = P/ (A) = 0.

By Theorem 2 for all A1, A2 € [0; Amax]

M2
¥ (A2) = ¢ (M) < T;|>\2—/\1|a (13)

whence

A2’ (A2) = M’ (M) < <|90'(0)| + gﬂf) A2 =M= CA2 = M|, (14)

2
where C' = |¢'(0)|+ %f“x Therefore, the achievement of the stopping criterion
for Algorithm 2 (item 9) is possible with
A €
N N
)‘max - >‘min = ;st < %a
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ie.

2 max
N}]OgQ&.
3

So, Algorithm 1 stops after no more than

MIN, ax
0 10g2 W

iterations. Similarly, if there is A, : ¢'(As) = 0, then (14) means that Algorithm 2
stops after no more than
M2 )\max
O | logy —4——
Epg
iterations.

Let us analyze the rate of convergence of proposed Algorithms1 and 2. We
need some results from [2] concerning a strongly convex objective function.

Method which guarantees an optimal rate of convergence for the problem
(6) is an algorithm based on the restarting of another Adaptive Mirror Descent
Algorithm. Information concerning the ordinary Adaptive Mirror Descent Algo-
rithm and the algorithm with its restart can be found in Sect.4 (Algorithms 3
and 4 respectively). In each iteration of Algorithms 1 and 2 the auxiliary problem

z5(}) = argmin {f(x) +Xg(z)}

is being solved inexactly with the accuracy §, which means

F(@s(A) + Ag(zs(N) — f(27(A) + Ag(z7 (X)) <6,

where the function f(x)+ Ag(x) is strongly convex and satisfies the Lipschitz
condition for any fixed A due to the properties of the functions f(x) and g(x).

To solve the auxiliary problem of minimization of the functional F)(x) =
f(z) + Ag(z), we use the standard gradient method. Let us note an important
statement [1]. After k iterations of the standard projected subgradient method
the following inequality holds

Fy\(zF F *<2M%*
\(z") — /\(w)\ma

where Mg, = max{Mj, X- My}. Due to the strong convexity of f we have
* * K ﬂ k2 * :u7f K12
Fx(z) 2 FA(@") + (VEA(@"), 2 = 2%) + o lle =27z 2 Fa(z) + - llz — 272

So,
2
— (

lz = =*|I3 < ; Fx(z) = Fx(2")).-
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Taking x = 2" the following estimate holds

4M?2 <5
k- p3

Thus, the required number of iterations does not exceed

lz = 2*|I3 <

4M3
k=—=.
,Uf5

Now by using Theorem 2 and taking into account the complexity O (1og2(%))
of the dichotomy in Algorithms 1 and 2, the general complexity is

1 1
0] <6210g2 5) .
Remark 3. If § = ¢ then the general complexity of Algorithms1 and 2:
1 1
0] (210g2) .
€ €

3.4 Estimate for Composite Formulation

Let us emphasize an important remark. Let f have a Lipschitz-continuous gra-
dient, with a constant L

[IVf(x) = Vlla < Lillz — yll2Vr,y € Q,

and g be a so-called simple function, i.e. g is a non-smooth convex function of a
simple structure. The latter means that Lebesgue sets

Ay ={zeQ:g(z) <y} (15)

have a simple structure. For example, to such problems can be attributed the
LASSO problem [3,9,12]:

1
Sl = bll5 + Allzllx — min, (16)
where A is a matrix of (mxn) dimension, b € R™, )\ is a regularization parameter

and || - || denotes the standard /;-norm.
Then we can use the following gradient-type procedure

L
gh = argrréig {(Vf(xk),x —2F) + \g(z) + ?fﬂx — mk||3} . (17)
x
For the method (17) we can achieve ||z — x(J)||2 < € after

Ly 1
I e =
1 0go 5
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iterations of the method (17) [9]. In such a case, the general complexity of
Algorithms 1 and 2:
1 1
O [ loga=loga— | . 18
< 092 5 0925) (18)

The convergence rate is similar in the case when g is a smooth convex function
of a simple structure (see (15)). Let g have a Lipschitz-continuous gradient, with
a constant L,

IVg(2) = Va(y)llz < Lyllz — y|l2Vz,y € Q

and f be a non-smooth convex function. Then we can use the following gradient-
type procedure

L
zh = argnéig {()\Vg(xk), z — ) + fz) + %Hx — mk|z} . (19)

For the method (19) we can achieve ||z — x(J)||2 < € after

L, 1
9 _
Mf 089 §

iterations of the method (19) and the general complexity (18) for Algorithms1
and 2.

3.5 The Case of Smooth Functionals
Suppose functions f and g are smooth, i.e. there exist some L¢, L, such that
IVf(x) = ViWll2 < Lylle — yll2 Yo,y € Q,

IVg(x) = Vg(y)ll2 < Lyllz = yll2 Yo,y € Q.

Then the auxiliary problem
in F
arg min (@),

where Fy(z) = f(x) + Ag(x), is also smooth and it can be solved, for example,
with Gradient Descent [9]

aF L = aF — oV E, ().

Note that F) is a pp-strongly convex function.
In such a case, the following estimate for the rate of convergence holds ([6],

o) k
2 — (@13 < |I2° — 2(8)]13 <1mx{ffu}> |

It means that the complexity of Algorithms1 and 2 is (18). For § = ¢ the

estimate (18) is
1
0 (log%€> .
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4 Comparison with Mirror Descent Algorithms

In this section, we compare the proposed methods with two variants of the
Mirror Descent Algorithm. These are the classical variant and the one based on
the restart method. Let us, according to [2], present basic information concerning
Mirror Descent Algorithms. Assume that there exists a constant @y > 0, that
||z — 2*||3 < BF. If there is a set of solutions of the problem {z}}, assume that

min |z — o3 < 63,

we{x}Q

The standard definition of the mirror descent operator with Euclidean prox-
imal setup is defined as

1
Mirr,(p )—&rgmln{(p, )+ 2||33—v||§} for eachz € @ and p € E¥,

and assume that it is easily computable.

Algorithm 3. Adaptive Mirror Descent Algorithm.

Require: ¢ > 0, QOSt Ho—a |13 < ©3.
0

1: 2° = argmingeq 5 Hx —z*|3

20 I=:0

33 N0

4: repeat

5. if g(z"V) < ¢ then

6: My =[[Vf@")lz, hv = 37

7 2N = Mirr n (hnVf(zN)) “productive step”
8: N —1

9: else

100 My = [Vl by =

11: 2Nt = Mirr,~ (hnVg(2)) “non-productive step”
12:  end if

13: N« N+1
N-1 o2
14: until Y M% >22
3=0 J €
> xkhk
kel
> by

kel

Ensure: zV :=

Theorem 3. Let the functionals f and g satisfy the Lipschitz condition with
constants My and Mg respectively. Then Algorithm 3 works no more than

_ Fmax{M]%,Mg?}@ﬂ
82
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iterations, and the point T is a e-solution of (6). It means that
f@) = fl@) <e, g(@") <e. (20)

Consider the case of p-strong convex f and g. We need to modify some
proposed assumptions. Assume that

0
5 Ve e Q: ||zl <1,

1 1
xO:argggginfr*H%, 5\\93—15*\\53

where {2 is some known constant. Suppose that there exists some initial starting
point 79 € Q and a number Ry > 0 such that ||zg — z*||3 < R3.

Algorithm 4. Adaptive Mirror Descent Algorithm for Strongly Convex Func-
tions (with restart of Algorithm 3).
Require: accuracy € > 0; starting point xo; §2 s.t. %Hx—x*ﬂg < % VeeQ: |zl £1;
strong convexity parameter y; Ro s.t. |zo — z*||7 < R3.
1: Set do(z) = || (*—) — |2

Ro
2: Set p=1.
3: repeat
4:  Set R2=Rj-27".
5 Set ey = “1:’2’ .
6:  Set z, as the output of Algorithm 3 with accuracy ¢,, prox-function d,_1(-) and
% as O2.

T dy(e) — 3l (ZR2) - a3
8 Setp=p+1.

nR3
2e

9: until p > log,
Ensure: z?.

Theorem 4. Assume that f and g satisfy the Lipschitz condition with constants
My and M, respectively. Then solving the p-strongly convex problem (6), Algo-
rithm 4 works no more than

2 3202 max{M?, M?
= ’VZOQQMRO-‘ + (M7, My}
2e UE

iterations. The output point x, of Algorithm 4 is satisfied to (20) and the follow-
ing inequality holds

2¢e
lzp — 2*[3 < —.

5 Numerical Experiments

To compare Algorithms 1, 2 and 4, a series of numerical experiments were carried
out. Consider three different examples of strongly convex, Lipschitz-continuous
objective functions, as follows



On Some Methods for Strongly Convex Optimization Problems 95

Ezample 1.
, 2
=t 3t 3 S
=1 \j=1
Ezample 2.
n—1 n—2
= Z zxf + Z (l‘l + X1+ $i+2)2 .
i=1 i=1
Ezample 3.

- 1
_ c4 D2
= ;w + QIIsz-

The functional constraint has the next form: g(z) = max {gi(z)}, where

gi((x1,...,20)) = (a;x,x) — 5,

; (i=1,...,m) are the rows in the matrix A € R™*™ with entries drawn from
the discrete uniform distribution in the half open interval [1 6)
Let us choose the set Q = {z = (21,22, ..., z,) € R"; 23+ 23 + ... +22 < 1}.
f(@)
—9(z)’
trary point such that g(z) < 0. For Algorithm4 we choose standard Euclidean

al

For Algorithms 1 and 2, we choose Amnin = 0, Mgz = where 7 is an arbi-

proximal setup as prox-function, starting point xy = (1’ ’1) , 0y = V2 2 (ie.
2=4) and Ry = 1.
For ¢ = %, i, %, 16 32 the results of the work of Algorithms1, 2 and 4, for

Examples 1 and 2, when n = 200, m = 100, are represented in Figs. 1 and 2 below.
For Example 3, When n = 1000 and m = 100, they are represented in Fig. 3.
These results demonstrate the comparison of the running time (in seconds) for
each algorithm, with different accuracy e.

All experiments were implemented in Python 3.4, on a computer fitted with
Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 1992 Mhz, 4 Core(s), 8 Logical
Processor(s). The RAM of the computer is 8 GB.

In general, from all experiments conducted, we can see that Algorithm 1 is the
best algorithm, the efficiency of this algorithm is represented by its very high
execution speed, where by this algorithm one needs a few seconds to achieve
the solution and to reach its stopping criterion. In some details, from Fig. 1
and Fig. 2, for Examples1 and 2 when n = 200, m = 100, one can see that,
according to the running time of each algorithm, Algorithm 1 works better than
Algorithm 2, which works better than Algorithm 4. We note that the running
time of Algorithm 4 is very long compared with the running time of Algorithms 1
and 2. Therefore, for the objective functions in Examples1 and 2 (quadratic
functions), we can see that Algorithm4 works badly, unlike Algorithm 1. For
Example 3 when n = 1000, m = 100, from Fig. 3, we can see that Algorithm 1 is
still the best, but now Algorithm 4 works better than Algorithm 2. We note that
the difference between the running time of Algorithms 1 and 4 is very small, but
it is very long compared with the running time of Algorithm 2.
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