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Abstract. We consider the classical optimization problem of minimiz-
ing a strongly convex, non-smooth, Lipschitz-continuous function with
one Lipschitz-continuous constraint. We develop the approach in [10] and
propose two methods for the considered problem with adaptive stopping
rules. The main idea of the methods is using the dichotomy method and
solving an auxiliary one-dimensional problem at each iteration. Theo-
retical estimates for the proposed methods are obtained. Partially, for
smooth functions, we prove the linear rate of convergence of the meth-
ods. We also consider theoretical estimates in the case of non-smooth
functions. The results for some examples of numerical experiments illus-
trating the advantages of the proposed methods and the comparison with
some adaptive optimal method for non-smooth strongly convex functions
are also given.
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1 Introduction

The optimization of non-smooth functions with constraints attracts wide inter-
est in large-scale optimization and its applications [4,14]. There are a lot of
methods of solving such kind of optimization problems. Some examples of these
methods, to name but a few, are: bundle-level method [13], penalty method
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[15] and Lagrange multipliers method [5]. Recently in [2], some adaptive Mir-
ror Descent methods were proposed for optimization problems of convex and
strongly convex functions with non-smooth constraints

min{f(x) : x ∈ Q ⊂ E, g(x) ≤ 0}, (1)

where Q is a convex and compact subset of a finite-dimensional real vector space
E, f : Q → R and g : E → R are convex Lipschitz-continuous functions. In the
case of several strongly convex non-smooth constraints, we consider one max-
type constraint which is also strongly convex.

Methods in [2] are optimal from the point of view of lower oracle bounds and
guarantee achieving acceptable precision ε with complexity O

(
ε−1
)

for strongly
convex, Lipschitz-continuous objective f and convex Lipschitz-continuous con-
straint g.

In this paper, we develop the approach in [10] and propose an alternative
approach for the problem (1) with a strongly convex Lipschitz-continuous objec-
tive f and a convex Lipschitz-continuous constraint g. Our approach is based on
the transition to a strongly convex dual problem. In this case, the dual function
depends on one dual variable λ ≥ 0. When the Slater conditions for the problem
(1) hold, all possible values of the dual variable are limited to a certain segment.
This allows us to apply the dichotomy method similarly to [10] to search for the
value of the dual variable λ, which is close to the appropriate λ∗, for which

λ∗ · g(x(λ∗)) = 0. (2)

We propose two algorithms with adaptive stopping criterion that meet the
necessary condition (2) in the general situation λ∗ ≥ 0 (Algorithm 1), as well as
under the stronger assumption of the existence of λ∗ > 0 (Algorithm 2). Partially,
the last condition holds for the economic problem considered in [10].

It turns out that, with the possibility of a relatively quick solution of auxiliary
problems, due to the proposed adaptive stopping criterion, Algorithms 1 and 2
may work faster than the optimal schemes in [2]. In proposed Algorithms 1 and
2 strong convexity of g is not required, and there is also no need to know the
value of the strong convexity parameter of f .

The paper consists of an Introduction and four main sections. In Sect. 2
we consider the problem statement and some basic information concerning the
necessary conditions of the extremum. In Sect. 3 we describe two main algorithms
and give some estimates of the rate of convergence for them. Section 4 is devoted
to basic information for optimal Mirror Descent Algorithms in the class of non-
smooth strongly convex functions [2]. In Sect. 5 we make a comparison between
the proposed algorithms and Mirror Descent Algorithm [2].

Thus, in the paper, we propose two methods for solving the problem (1) with
the following types of assumptions:

|f(x) − f(y)| � Mf ||x − y||2, |g(x) − g(y)| � Mg||x − y||2 (3)

or

||∇f(x) − ∇f(y)||2 � Lf ||x − y||2, ||∇g(x) − ∇g(y)||2 � Lg||x − y||2 (4)

for all x, y ∈ Q, and for some real positive numbers Mf ,Mg, Lf , Lg.
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The contributions of this paper can be summarized as follows.

– With assumptions (4), the proposed methods have complexity

O

(
log22

1
ε

)
, (5)

i.e. the linear rate of convergence. Note that we assume the strong convexity
for the objective f only. The functional constraint g may not be strongly
convex.

– With assumptions (3) we obtain complexity O

(
1
ε2

log2
1
ε

)

, which is generally

not optimal. However, due to the adaptivity of Algorithms 1 and 2, these
methods can work faster than the optimal ones in [2] (see Sect. 5 below).
Note that, unlike ([2], Subection 3.2), we require the strong convexity only of
the objective functional f . In this case, the functional g, in general, may not
be strongly convex.

– Also, a class of non-smooth functionals is considered, for which Algorithms 1
and 2 have complexity (5) (see Subsect. 3.4 below).

2 Problem Statement

Let (E, ||·||2) be a normed finite-dimensional vector space with inner product 〈·, ·〉
and norm ||x||2 =

√〈x, x〉. In this paper we consider the following optimization
problem

f(x) → min
g(x)�0
x∈Q

, (6)

where f is a μf -strongly convex function with respect to the 2-norm, i.e.

f(αx + (1 − α)y)) ≤ αf(x) + (1 − α)f(y) − α(1 − α)
μf

2
‖x − y‖22

for α ∈ [0, 1] and for all x, y ∈ Q. Assume that f and g are Lipschitz-continuous:

|f(y) − f(x)| � Mf‖y − x‖2, ∀x, y ∈ Q,

|g(y) − g(x)| � Mg‖y − x‖2, ∀x, y ∈ Q.

Let us introduce a dual factor λ � 0 and consider the dual problem to (6).

min
g(x)�0
x∈Q

f(x) = min
x∈Q

{
f(x) + max

λ�0
(λg(x))

}
= max

λ�0

{
min
x∈Q

(f(x) + λg(x))
︸ ︷︷ ︸

=ϕ(λ)

}
.

Then the dual problem to the problem (6) is:

ϕ(λ) = f(x(λ)) + λg(x(λ)) → max
λ�0

, (7)
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where
x(λ) = arg min

x∈Q
{f(x) + λg(x)} . (8)

Let us mention the following important well-known Demyanov-Danskin-
Rubinov Theorem, see [7,8].

Theorem 1. Let ϕ(λ) = min
x∈X

F (x, λ) for all λ � 0, where F (x, λ) is a smooth

convex function with respect to λ and x(λ) is the only maximum point. Then

ϕ′(λ) = F ′
λ(x(λ), λ).

For the problem (7) Theorem 1 means that:

ϕ′(λ) = g(x(λ)). (9)

Let λ∗ be a solution of the dual problem (7). Then, according to the necessary
condition of the extremum, the following equality must be satisfied for λ∗:

λ∗g(x(λ∗)) = 0, λ∗ � 0,

which, by using (9), can be modified as follows:

λ∗ϕ′(λ∗) = 0, λ∗ � 0. (10)

3 Algorithms and Estimates of the Accuracy of Solutions
and the Rate of Convergence

To solve the above-mentioned optimization problem (6), we proposed two algo-
rithms. The main idea of the proposed algorithms is using the dichotomy method
to solve the dual problem and solving an auxiliary one-dimensional problem at
each iteration of the algorithms. Note that stopping criteria are the only differ-
ence between these algorithms.

Algorithm 1
Require: convex function f ; initial localization interval

[
λ0

min, λ0
max

]
of the dual vari-

able; accuracy δ for auxiliary problems; accuracy ε.
1: N := 0
2: repeat

3: λN :=
λN

min+λN
max

2
;

4: xδ(λ
N ) = argmin

x∈Q
{f(x) + λNg(x)};

5: ϕ′(λN ) = g(xδ(λ
N ));

6: if ϕ′(λN ) < 0 then λN+1
max :=

λN
min+λN

max
2

;

7: if ϕ′(λN ) > 0 then λN+1
min :=

λN
min+λN

max
2

;
8: N := N + 1;
9: until λN |g(xδ(λ

N ))| ≤ ε.
Ensure: λN , with λN |g(xδ(λ

N ))| ≤ ε; xδ(λ
N ).
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Algorithm 2
Require: convex function f ; initial localization interval

[
λ0

min, λ0
max

]
of the dual vari-

able; accuracy δ for auxiliary problems; accuracy ε.
1: N := 0
2: repeat

3: λN :=
λN

min+λN
max

2
;

4: xδ(λ
N ) = argmin

x∈Q
{f(x) + λNg(x)};

5: ϕ′(λN ) = g(xδ(λ
N ));

6: if ϕ′(λN ) < 0 then λN+1
max :=

λN
min+λN

max
2

;

7: if ϕ′(λN ) > 0 then λN+1
min :=

λN
min+λN

max
2

;
8: N := N + 1;
9: until |g(xδ(λ

N ))| ≤ ε.
Ensure: λN , with |g(xδ(λ

N ))| ≤ ε; xδ(λ
N ).

Remark 1. Note that the stopping criterion of Algorithm1 is necessarily reached
due to the assumption that there exists such k ∈ N, λk = 0. However, we need an
additional assumption to guarantee that the Algorithm2 stops. Suppose there
exists a point x ∈ Q, such that g′(x) = 0.

3.1 Slater Condition

In order to use the dichotomy method and solve the dual problem, it is necessary
to compactify the dual variable. So, the initial interval of the localization of
the dual variable must be determined. As the dual variable reflects namely the
inequality constraint, we can take zero as the lower bound, that means

λmin = 0.

To determine the upper bound, we need to use the Slater condition.

Lemma 1. Consider the problem of convex optimization

f(x) → min
g(x)�0
x∈Q

.

Suppose the Slater condition is satisfied, so there is such a point x ∈ Q that
g(x) < 0, i.e. there exists γ > 0 such that g(x) = −γ < 0. Then the following
estimate holds

λ∗ � 1
γ

(f(x) − min
x∈Q

f(x)), (11)

where λ∗ is a solution of the dual problem ϕ(λ) → max
λ�0

.



On Some Methods for Strongly Convex Optimization Problems 87

Proof. Note the following inequality

min
x∈Q

f(x) = min
x∈Q

⎧
⎨

⎩
f(x) + λ︸︷︷︸

=0

g(x)

⎫
⎬

⎭
� max

λ�0
min
x∈Q

{f(x) + λg(x)}

= min
x∈Q

{f(x) + λ∗g(x)} � f(x̄) + λ∗g(x̄) = f(x̄) + λ∗γ.

Using this inequality one can get

λ∗γ � f(x) − min
x∈Q

f(x).

�
Thus, by using lemma (1), we can take the upper bound for the dual variable

λ as follows:
λmax =

1
γ

(
f(x) − min

x∈Q
f(x)
)
.

3.2 An Estimate of the Accuracy of Solutions for the Proposed
Algorithms

To estimate the rate of convergence of the previous Algorithms 1 and 2, we need
the following analogue of Theorem 1 from [11].

Theorem 2. Let f(x) be a μf -strongly convex function, the function g(x) satis-
fies the Lipschitz condition with a constant Mg. Then the function ϕ(λ), defined
in (7), where x(λ) is determined by the condition (8), is an M2

g /μf -smooth
function, i.e. the derivative of the function ϕ(λ) satisfies the following Lipschitz
condition

|ϕ′(λ2) − ϕ′(λ1)| � Lϕ |λ2 − λ1| , (12)

with a constant Lϕ = M2
g /μf .

Proof. Let λ1, λ2 ∈ [λmin, λmax]. Define

x1 = arg min
x∈Q

{f(x) + λ1g(x)} , x2 = arg min
x∈Q

{f(x) + λ2g(x)} .

Since x1 and x2 are unique due to the strong convexity of the function f and
by using (9), one can get

ϕ′(λ1) = g(x1), ϕ′(λ2) = g(x2).

Recall the necessary optimality conditions are

〈∇f(x1) + λ1∇g(x1), x1 − x2〉 � 0, 〈∇f(x2) + λ2∇g(x2), x2 − x1〉 � 0.

Summing these inequalities, we get

〈∇f(x1) − ∇f(x2), x2 − x2〉 � 〈λ1∇g(x1) − λ2∇g(x2), x2 − x1〉.
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Due to the strong convexity of f(x), we obtain the following inequality

〈∇f(x2) − ∇f(x1), x2 − x1〉 � μf ||x2 − x1||22.
Then

μf ||x2 − x1||22 � 〈λ1∇g(x1) − λ2∇g(x2), x2 − x1〉
= λ1︸︷︷︸

�0

〈∇g(x1) − ∇g(x2), x2 − x1〉︸ ︷︷ ︸
�0

+(λ1 − λ2)〈∇g(x2), x2 − x1〉

� |λ1 − λ2|〈∇g(x2), x2 − x1〉 � |λ1 − λ2| ||∇g(x2)||2 ||x2 − x1||2
� Mg|λ1 − λ2| ||x2 − x1||2,

where ||∇g(x2)||2 � Mg since g satisfies Lipschitz condition (3).
Thus, for x1 �= x2 we get

μf ||x2 − x1||2 � Mg|λ2 − λ1|.
As a result, the following estimate holds

|ϕ′(λ2) − ϕ′(λ1)| = |g(x2) − g(x1)| � Mg||x2 − x1||2 �
M2

g

μf
|λ2 − λ1|.

�
In order to estimate the accuracy of solutions of the proposed Algorithms 1

and 2, we set the following two lemmas.

Lemma 2. Suppose the stopping criterion of Algorithm 1 holds for λ = λN ,
then the following inequalities hold

f(xδ(λ)) − f(x∗) � ε + δ, g(xδ(λ)) � ε

λ
.

For the case δ = ε we get

f(xδ(λ)) − f(x∗) � 2ε, g(xδ(λ)) � ε

λ
.

Proof. Let λ∗ be a solution of the dual problem (7). Denote x∗ = x(λ∗). Then
we get the following relation

f(xδ(λ)) + λg(xδ(λ)) � f(x(λ)) + λg(x(λ)) + δ = ϕ(λ) + δ

� ϕ(λ∗) + δ = f(x∗) + λ∗ g(x∗)
︸ ︷︷ ︸

�0

+ δ � f(x∗) + δ.

Consequently,

f(xδ(λ)) − f(x∗) � −λg(xδ(λ)) + δ � ε + δ

due to the stopping criterion of Algorithm1, as required. The inequality
g(xδ(λ)) � ε

λ follows from the stopping criterion of Algorithm1 (see item 9).
�
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Also an analogue of Lemma2 takes place.

Lemma 3. Suppose the stopping criterion of Algorithm2 holds for λ = λN ,
then the following inequalities hold

f(xδ(λ)) − f(x∗) � λε + δ, g(xδ(λ)) � ε.

For the case δ = ε we get

f(xδ(λ)) − f(x∗) � (λ + 1)ε, g(xδ(λ)) � ε.

Remark 2. Let us analyze Lemmas 2 and 3. Algorithm 1 (Lemma 2) guarantees
the desirable accuracy of the solution with respect to the objective function, but,
possibly, unsatisfactory accuracy of the solution with respect to the constraint,
as the estimate is huge in case λ is small. Algorithm 2 (Lemma 3) provides the
desirable accuracy of the solution with respect to the constraint and, possibly,
unsatisfactory accuracy of the solution with respect to the objective function
in case λ is huge. So one of the Algorithms 1, 2 surely guarantees the desirable
accuracy with respect to both the objective function and the constraint.

3.3 Estimates of the Rate of Convergence
for Lipschitz-Continuous Functionals

The idea of the proposed methods is the consistent decrease of the localization
interval of the values of the dual variable λ. At each iteration of Algorithms 1
and 2, this interval decreases by 2 times and every time contains λ∗, for which
λ∗g(x(λ∗)) = 0 (for Algorithm 1)

λ∗g(x(λ∗)) = λ∗ϕ′(λ∗) = 0

or g(x(λ∗)) = 0 (for Algorithm 2)

g(x(λ∗)) = ϕ′(λ∗) = 0.

By Theorem 2 for all λ1, λ2 ∈ [0;λmax]

|ϕ′(λ2) − ϕ′(λ1)| �
M2

g

μf
|λ2 − λ1|, (13)

whence

|λ2ϕ
′(λ2) − λ1ϕ

′(λ1)| �
(

|ϕ′(0)| +
M2

g λmax

μf

)

|λ2 − λ1| = C|λ2 − λ1|, (14)

where C = |ϕ′(0)|+ M2
g λmax

μf
. Therefore, the achievement of the stopping criterion

for Algorithm 2 (item 9) is possible with

λN
max − λN

min =
λmax

2N
� ε

2C
,
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i.e.
N � log2

2Cλmax

ε
.

So, Algorithm 1 stops after no more than

O

(

log2
M2

g λ2
max

εμf

)

iterations. Similarly, if there is λ∗ : ϕ′(λ∗) = 0, then (14) means that Algorithm 2
stops after no more than

O

(

log2
M2

g λmax

εμf

)

iterations.
Let us analyze the rate of convergence of proposed Algorithms 1 and 2. We

need some results from [2] concerning a strongly convex objective function.
Method which guarantees an optimal rate of convergence for the problem

(6) is an algorithm based on the restarting of another Adaptive Mirror Descent
Algorithm. Information concerning the ordinary Adaptive Mirror Descent Algo-
rithm and the algorithm with its restart can be found in Sect. 4 (Algorithms 3
and 4 respectively). In each iteration of Algorithms 1 and 2 the auxiliary problem

xδ(λ) = arg min
x∈Q

{
f(x) + λg(x)

}

is being solved inexactly with the accuracy δ, which means

f(xδ(λ)) + λg(xδ(λ)) − f(x∗(λ)) + λg(x∗(λ)) � δ,

where the function f(x) + λg(x) is strongly convex and satisfies the Lipschitz
condition for any fixed λ due to the properties of the functions f(x) and g(x).

To solve the auxiliary problem of minimization of the functional Fλ(x) =
f(x) + λg(x), we use the standard gradient method. Let us note an important
statement [1]. After k iterations of the standard projected subgradient method
the following inequality holds

Fλ(xk) − Fλ(x∗) �
2M2

Fλ

k · μf
,

where MFλ
= max{Mf , λ · Mg}. Due to the strong convexity of f we have

Fλ(x) � Fλ(x∗) + 〈∇Fλ(x∗), x − x∗〉 +
μf

2
‖x − x∗‖22 � Fλ(x∗) +

μf

2
‖x − x∗‖22.

So,

‖x − x∗‖22 � 2
μf

(Fλ(x) − Fλ(x∗)) .
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Taking x = xk the following estimate holds

‖x − x∗‖22 � 4M2
F

k · μ2
f

� δ2.

Thus, the required number of iterations does not exceed

k =
4M2

F

μ2
fδ2

.

Now by using Theorem 2 and taking into account the complexity O
(
log2(

1
ε )
)

of the dichotomy in Algorithms 1 and 2, the general complexity is

O

(
1
δ2

log2
1
ε

)
.

Remark 3. If δ = ε then the general complexity of Algorithms 1 and 2:

O

(
1
ε2

log2
1
ε

)
.

3.4 Estimate for Composite Formulation

Let us emphasize an important remark. Let f have a Lipschitz-continuous gra-
dient, with a constant Lf

||∇f(x) − ∇f(y)||2 � Lf ||x − y||2∀x, y ∈ Q,

and g be a so-called simple function, i.e. g is a non-smooth convex function of a
simple structure. The latter means that Lebesgue sets

Λy = {x ∈ Q : g(x) < y} (15)

have a simple structure. For example, to such problems can be attributed the
LASSO problem [3,9,12]:

1
2
||Ax − b||22 + λ||x||1 → min

x∈Rn
, (16)

where A is a matrix of (m×n) dimension, b ∈ R
m, λ is a regularization parameter

and || · ||1 denotes the standard l1-norm.
Then we can use the following gradient-type procedure

xk+1 = arg min
x∈Q

{
〈∇f(xk), x − xk〉 + λg(x) +

Lf

2
||x − xk||22

}
. (17)

For the method (17) we can achieve ||x − x(δ)||2 � ε after
√

Lf

μ
log2

1
δ
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iterations of the method (17) [9]. In such a case, the general complexity of
Algorithms 1 and 2:

O

(
log2

1
δ
log2

1
ε

)
. (18)

The convergence rate is similar in the case when g is a smooth convex function
of a simple structure (see (15)). Let g have a Lipschitz-continuous gradient, with
a constant Lg

||∇g(x) − ∇g(y)||2 � Lg||x − y||2∀x, y ∈ Q

and f be a non-smooth convex function. Then we can use the following gradient-
type procedure

xk+1 = arg min
x∈Q

{
〈λ∇g(xk), x − xk〉 + f(x) +

λLg

2
||x − xk||22

}
. (19)

For the method (19) we can achieve ||x − x(δ)||2 � ε after
√

λLg

μf
log2

1
δ

iterations of the method (19) and the general complexity (18) for Algorithms 1
and 2.

3.5 The Case of Smooth Functionals

Suppose functions f and g are smooth, i.e. there exist some Lf , Lg such that

||∇f(x) − ∇f(y)||2 � Lf ||x − y||2 ∀x, y ∈ Q,

||∇g(x) − ∇g(y)||2 � Lg||x − y||2 ∀x, y ∈ Q.

Then the auxiliary problem
arg min

x∈Q
Fλ(x),

where Fλ(x) = f(x) + λg(x), is also smooth and it can be solved, for example,
with Gradient Descent [9]

xk+1 = xk − α∇Fλ(xk).

Note that Fλ is a μf -strongly convex function.
In such a case, the following estimate for the rate of convergence holds ([6],

[9])

||xk − x(δ)||22 � ||x0 − x(δ)||22
(

1 − μf

max{Lf , λLg}
)k

.

It means that the complexity of Algorithms 1 and 2 is (18). For δ = ε the
estimate (18) is

O

(
log22

1
ε

)
.
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4 Comparison with Mirror Descent Algorithms

In this section, we compare the proposed methods with two variants of the
Mirror Descent Algorithm. These are the classical variant and the one based on
the restart method. Let us, according to [2], present basic information concerning
Mirror Descent Algorithms. Assume that there exists a constant Θ0 > 0, that
1
2‖x − x∗‖22 ≤ Θ2

0. If there is a set of solutions of the problem {x∗
i }, assume that

min
x∗∈{x∗

i }
1
2
‖x − x∗‖22 ≤ Θ2

0.

The standard definition of the mirror descent operator with Euclidean prox-
imal setup is defined as

Mirrx(p) = arg min
v∈Q

{
〈p, v〉 +

1
2
‖x − v‖22

}
for each x ∈ Q and p ∈ E∗,

and assume that it is easily computable.

Algorithm 3. Adaptive Mirror Descent Algorithm.
Require: ε > 0, Θ0 s.t.

1
2
‖x − x∗‖2

2 � Θ2
0.

1: x0 = argminx∈Q
1
2
‖x − x∗‖2

2

2: I =: ∅
3: N ← 0
4: repeat
5: if g(xN ) � ε then
6: MN = ||∇f(xN )||2, hN = ε

M2
N

7: xN+1 = MirrxN (hN∇f(xN )) “productive step”
8: N → I
9: else
10: MN = ||∇g(xN )||2, hN = ε

M2
N

11: xN+1 = MirrxN (hN∇g(xN )) “non-productive step”
12: end if
13: N ← N + 1

14: until
N−1∑

j=0

1
M2

j
� 2

Θ2
0

ε2

Ensure: x̄N :=

∑

k∈I
xkhk

∑

k∈I
hk

Theorem 3. Let the functionals f and g satisfy the Lipschitz condition with
constants Mf and Mg respectively. Then Algorithm 3 works no more than

N =

⌈
2max{M2

f ,M2
g }Θ2

0

ε2

⌉
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iterations, and the point xN is a ε-solution of (6). It means that

f(xk) − f(x∗) ≤ ε, g(xk) ≤ ε. (20)

Consider the case of μ-strong convex f and g. We need to modify some
proposed assumptions. Assume that

x0 = arg min
x∈Q

1
2
‖x − x∗‖22,

1
2
‖x − x∗‖22 ≤ Ω

2
∀x ∈ Q : ‖x‖2 ≤ 1,

where Ω is some known constant. Suppose that there exists some initial starting
point x0 ∈ Q and a number R0 > 0 such that ‖x0 − x∗‖22 ≤ R2

0.

Algorithm 4. Adaptive Mirror Descent Algorithm for Strongly Convex Func-
tions (with restart of Algorithm 3).
Require: accuracy ε > 0; starting point x0; Ω s.t. 1

2
‖x−x∗‖2

2 ≤ Ω
2

∀x ∈ Q : ‖x‖2 ≤ 1;
strong convexity parameterμ; R0 s.t. ‖x0 − x∗‖2

2 ≤ R2
0.

1: Set d0(x) =
1
2
‖

(
x−x0

R0

)
− x∗‖2

2.

2: Set p = 1.
3: repeat
4: Set R2

p = R2
0 · 2−p.

5: Set εp =
μR2

p

2
.

6: Set xp as the output of Algorithm 3 with accuracy εp, prox-function dp−1(·) and
Ω
2

as Θ2
0.

7: dp(x) ← 1
2
‖

(
x−xp

Rp

)
− x∗‖2

2.

8: Set p = p + 1.

9: until p > log2
μR2

0
2ε

.
Ensure: xp.

Theorem 4. Assume that f and g satisfy the Lipschitz condition with constants
Mf and Mg respectively. Then solving the μ-strongly convex problem (6), Algo-
rithm 4 works no more than

k =
⌈
log2

μR2
0

2ε

⌉
+

32Ω max{M2
f ,M2

g }
με

iterations. The output point xp of Algorithm4 is satisfied to (20) and the follow-
ing inequality holds

‖xp − x∗‖22 ≤ 2ε

μ
.

5 Numerical Experiments

To compare Algorithms 1, 2 and 4, a series of numerical experiments were carried
out. Consider three different examples of strongly convex, Lipschitz-continuous
objective functions, as follows
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Example 1.

f(x) = x2
1 +

n∑

i=1

ix2
i +

1
100

n∑

i=1

⎛

⎝
i∑

j=1

xj

⎞

⎠

2

.

Example 2.

f(x) =
n−1∑

i=1

ix2
i +

n−2∑

i=1

(xi + xi+1 + xi+2)
2
.

Example 3.

f(x) =
n∑

i=1

ix4
i +

1
2
‖x‖22.

The functional constraint has the next form: g(x) = max
1≤i≤m

{gi(x)}, where

gi((x1, . . . , xn)) = 〈aix, x〉 − 5,

aT
i (i = 1, . . . , m) are the rows in the matrix A ∈ R

m×n with entries drawn from
the discrete uniform distribution in the half open interval [1, 6).

Let us choose the set Q = {x = (x1, x2, ..., xn) ∈ R
n ; x2

1 +x2
2 + ...+x2

n ≤ 1}.
For Algorithms 1 and 2, we choose λmin = 0, λmax = f(x̄)

−g(x̄) , where x̄ is an arbi-
trary point such that g(x̄) < 0. For Algorithm 4 we choose standard Euclidean
proximal setup as prox-function, starting point x0 = (1,...,1)√

n
, Θ0 =

√
2 (i.e.

Ω = 4) and R0 = 1.
For ε = 1

2 , 1
4 , 1

8 , 1
16 , 1

32 the results of the work of Algorithms 1, 2 and 4, for
Examples 1 and 2, when n = 200,m = 100, are represented in Figs. 1 and 2 below.
For Example 3, when n = 1000 and m = 100, they are represented in Fig. 3.
These results demonstrate the comparison of the running time (in seconds) for
each algorithm, with different accuracy ε.

All experiments were implemented in Python 3.4, on a computer fitted with
Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 1992 Mhz, 4 Core(s), 8 Logical
Processor(s). The RAM of the computer is 8 GB.

In general, from all experiments conducted, we can see that Algorithm 1 is the
best algorithm, the efficiency of this algorithm is represented by its very high
execution speed, where by this algorithm one needs a few seconds to achieve
the solution and to reach its stopping criterion. In some details, from Fig. 1
and Fig. 2, for Examples 1 and 2 when n = 200,m = 100, one can see that,
according to the running time of each algorithm, Algorithm1 works better than
Algorithm 2, which works better than Algorithm4. We note that the running
time of Algorithm 4 is very long compared with the running time of Algorithms 1
and 2. Therefore, for the objective functions in Examples 1 and 2 (quadratic
functions), we can see that Algorithm 4 works badly, unlike Algorithm1. For
Example 3 when n = 1000,m = 100, from Fig. 3, we can see that Algorithm 1 is
still the best, but now Algorithm 4 works better than Algorithm 2. We note that
the difference between the running time of Algorithms 1 and 4 is very small, but
it is very long compared with the running time of Algorithm2.
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Fig. 1. Example 1, n = 200. Fig. 2. Example 2, n = 200. Fig. 3. Example 3, n = 1000.
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